המקום בו המומחים והחברות הטובות ביותר נפגשים
Technically lead the group by shaping the architecture, guiding design decisions, and ensuring the technical excellence of the Data Platform’s three teams
Design and implement data solutions that address both applicative needs and data analysis requirements, creating scalable and efficient access to actionable insights
Drive initiatives in Data Engineering Infra, including building robust ingestion layers, managing streaming ETLs, and guaranteeing data quality, compliance, and platform performance
Develop and maintain the Data Warehouse, integrating data from various sources for optimized querying, analysis, and persistence, supporting informed decision-makingLeverage data modeling and transformations to structure, cleanse, and integrate data, enabling efficient retrieval and strategic insights
Build and enhance the Machine Learning Platform, delivering infrastructure and tools that streamline the work of Data Scientists, enabling them to focus on developing models while benefiting from automation for production deployment, maintenance, and improvements. Support cutting-edge use cases like feature stores, real-time models, point-in-time (PIT) data retrieval, and telematics-based solutions
Collaborate closely with other Staff Engineers across Lemonade to align on cross-organizational initiatives and technical strategies
Work seamlessly with Data Engineers, Data Scientists, Analysts, Backend Engineers, and Product Managers to deliver impactful solutions
Share knowledge, mentor team members, and champion engineering standards and technical excellence across the organization
8+ years of experience in data-related roles such as Data Engineer, Data Infrastructure Engineer, BI Engineer, or Machine Learning Platform Engineer, with significant experience in at least two of these areas
A B.Sc. in Computer Science or a related technical field (or equivalent experience)
Extensive expertise in designing and implementing Data Lakes and Data Warehouses, including strong skills in data modeling and building scalable storage solutions
Proven experience in building large-scale data infrastructures, including both batch processing and streaming pipelines
A deep understanding of Machine Learning infrastructure, including tools and frameworks that enable Data Scientists to efficiently develop, deploy, and maintain models in production, an advantage
Proficiency in Python, Pulumi/Terraform, Apache Spark, AWS, Kubernetes (K8s), and Kafka for building scalable, reliable, and high-performing data solutions
Strong knowledge of databases, including SQL (schema design, query optimization) and NoSQL, with a solid understanding of their use cases
משרות נוספות שיכולות לעניין אותך