A Typical day:
Your contributions take a variety of shapes:
- Work with large scale structured and unstructured data, build and continuously improve cutting edge Machine Learning models for Airbnb product, business and operational use cases.
- Work collaboratively with cross-functional partners including software engineers, product managers, operations and data scientists, identify opportunities for business impact, understand, refine, and prioritize requirements for machine learning models, drive engineering decisions, and quantify impact.
- Work closely with other trust defense and platform teams to tackle the changing landscape of fraud attacks.
- Hands-on develop, productionize, and operate Machine Learning models and pipelines at scale, including both batch and real-time use cases.
- Examples include: Anomaly detection models, ML models for continuous risk evaluation.
Your Expertise:
- 6 to 10 years of relevant industry experience in applied Machine Learning, including BE/B.tech or PhD in relevant fields
- Strong programming (Scala / Python / Java/ C++ or equivalent) and data engineering skills
- Deep understanding of Machine Learning best practices (eg. training/serving skew minimization, A/B test, feature engineering, feature/model selection), algorithms (eg. gradient boosted trees, neural networks/deep learning, optimization) and domains (eg. natural language processing, computer vision, personalization and recommendation, anomaly detection)
- Experience with 3 or more of these technologies: Tensorflow, PyTorch, Kubernetes, Spark, Airflow (or equivalent), Kafka (or equivalent), data warehouse (eg. Hive)
- Industry experience building end-to-end Machine Learning infrastructure and/or building and productionizing Machine Learning models
- Exposure to architectural patterns of a large, high-scale software applications (e.g., well-designed APIs, high volume data pipelines, efficient algorithms, models)
- Experience with test driven development, familiar with A/B testing, incremental delivery and deployment.
- Experience with the Trust and Risk domain is a plus.
Offices: Bangalore, India