Expoint - all jobs in one place

Finding the best job has never been easier

Limitless High-tech career opportunities - Expoint

Nvidia Senior HPC Performance Engineer 
United States, California 
361962072

Today
US, CA, Santa Clara
time type
Full time
posted on
Posted Today
job requisition id
What you will be doing:
  • Conduct in-depth performance characterization and analysis on large multi-GPU and multi-node clusters.

  • Study the interaction of our libraries with all HW (GPU, CPU, Networking) and SW components in the stack

  • Evaluate proof-of-concepts, conduct trade-off analysis when multiple solutions are available

  • Triage and root-cause performance issues reported by our customers

  • Collect a lot of performance data; build tools and infrastructure to visualize and analyze the information

  • Collaborate with a very dynamic team across multiple time zones

What we need to see:
  • M.S. (or equivalent experience) or PHD in Computer Science, or related field with relevant performance engineering and HPC experience

  • 3+ yrs of experience with parallel programming and at least one communication runtime (MPI, NCCL, UCX, NVSHMEM)

  • Experience conducting performance benchmarking and triage on large scale HPC clusters

  • Good understanding of computer system architecture, HW-SW interactions and operating systems principles (aka systems software fundamentals)

  • Implement micro-benchmarks in C/C++, read and modify the code base when required

  • Ability to debug performance issues across the entire HW/SW stack. Proficient in a scripting language, preferably Python

  • Familiar with containers, cloud provisioning and scheduling tools (Kubernetes, SLURM, Ansible, Docker)

  • Adaptability and passion to learn new areas and tools. Flexibility to work and communicate effectively across different teams and timezones

Ways to stand out from the crowd:
  • Practical experience with Infiniband/Ethernet networks in areas like RDMA, topologies, congestion control

  • Experience debugging network issues in large scale deployments

  • Familiarity with CUDA programming and/or GPUs

  • Experience with Deep Learning Frameworks such PyTorch, TensorFlow

You will also be eligible for equity and .