מציאת משרת הייטק בחברות הטובות ביותר מעולם לא הייתה קלה יותר
As a Capital One Machine Learning Engineer (MLE), you'll be part of an Agile team dedicated to productionizing machine learning applications and systems at scale. You’ll participate in thedetailed technical design, development, and implementation of machine learning applicationsusing existing and emerging technology platforms. You’llfocus on machine learning architectural design, develop and review model and application code,and ensure high availability and performance of our machine learning applications. You'll havemachine learning engineering.
What you’ll do in the role:
The MLE role overlaps with many disciplines, such as Ops, Modeling, and Data Engineering. In this role, you'll be expected to perform many ML engineering activities, including one or more of the following:
Design, build, and/or deliver ML models and components that solve real-world business problems, while working in collaboration with the Product and Data Science teams.
Inform your ML infrastructure decisions using your understanding of ML modeling techniques and issues, including choice of model, data, and feature selection, model training, hyperparameter tuning, dimensionality, bias/variance, and validation).
Solve complex problems by writing and testing application code, developing and validating ML models, and automating tests and deployment.
Collaborate as part of a cross-functional Agile team to create and enhance software that enables state-of-the-art big data and ML applications.
Retrain, maintain, and monitor models in production.
Leverage or build cloud-based architectures, technologies, and/or platforms to deliver optimized ML models at scale.
Construct optimized data pipelines to feed ML models.
Leverage continuous integration and continuous deployment best practices, including test automation and monitoring, to ensure successful deployment of ML models and application code.
Ensure all code is well-managed to reduce vulnerabilities, models are well-governed from a risk perspective, and the ML follows best practices in Responsible and Explainable AI.
Use programming languages like Python.
Basic Qualifications:
Bachelor’s degree
At least 8 years of experience designing and building data-intensive solutions using distributed computing (Internship experience does not apply)
At least 4 years of experience programming with Python, Scala, or Java
At least 3 years of experience building, scaling, and optimizing ML systems
At least 2 years of experience leading teams developing ML solutions
At least 4 years of people management experience.
Preferred Qualifications:
Master's or doctoral degree in computer science, electrical engineering, mathematics, or a similar field
4+ years of on-the-job experience with an industry recognized ML framework such as scikit-learn, PyTorch, Dask, Spark, or TensorFlow
2+ years of experience with container & image management (AWS EKS, Kubernetes, Docker)
3+ years of experience developing performant, resilient, and maintainable code
3+ years of experience with data gathering and preparation for ML models
Experience developing and deploying ML solutions in a public cloud such as AWS, Azure, or Google Cloud Platform
3+ years of experience building production-ready data pipelines that feed ML models
Ability to communicate complex technical concepts clearly to a variety of audiences
ML industry impact through conference presentations, papers, blog posts, open source contributions, or patents
. Eligibility varies based on full or part-time status, exempt or non-exempt status, and management level.
If you have visited our website in search of information on employment opportunities or to apply for a position, and you require an accommodation, please contact Capital One Recruiting at 1-800-304-9102 or via email at . All information you provide will be kept confidential and will be used only to the extent required to provide needed reasonable accommodations.
משרות נוספות שיכולות לעניין אותך