המקום בו המומחים והחברות הטובות ביותר נפגשים
1. PySpark and Spark: Proficiency in PySpark, including the Spark DataFrame API and RDD (Resilient Distributed Datasets) programming model. Knowledge of Spark internals, data partitioning, and optimization techniques is advantageous.
2. Data Manipulation and Analysis: Ability to manipulate and analyze large datasets using PySpark’s DataFrame transformations and actions. This includes filtering, aggregating, joining, and performing complex data transformations.
3. Distributed Computing: Understanding of distributed computing concepts, such as parallel processing, cluster management, and data partitioning. Experience with Spark cluster deployment, configuration, and optimization is valuable.
4. Data Serialization and Formats: Knowledge of different data serialization formats like JSON, Parquet, Avro, and CSV. Familiarity with handling unstructured data and working with NoSQL databases like Hadoop HBase or Apache Cassandra.
5. Data Pipelines and ETL: Experience in building data pipelines and implementing Extract, Transform, Load (ETL) processes using PySpark. Understanding of data integration, data cleansing, and data quality techniques.
משרות נוספות שיכולות לעניין אותך