:
:
- : 提案されたソリューション、計画、およびリスクのビジネスニーズと価値を利害関係者および意思決定者に伝える能力。これには、事実と目標および戦略との整合性に基づいて説得し、情報を提供する能力が含まれます。
- : 顧客のニーズと技術を理解することで、利害関係者(技術的意思決定者、ビジネス意思決定者)との深い関係を築き、信頼できるアドバイザーの地位を確立する能力。
- 洞察に基づく傾聴: 顧客のニーズ、問題、ビジネス環境、および推進要因を理解するために洞察に満ちた質問をし、顧客が言ったことを超えて理解します。
:
- : 基礎的なセキュリティ、基礎的なAI、アーキテクチャ設計における技術的経験と知識の幅、以下のいずれかの分野での深い専門知識。
- : Azure SQLData(IaaS/PaaS)、クラウドへの展開と移行、オープンソースデータベースの展
- :AWS、GCP、Snowflake、Databricksなどの主要なデータと分析プラットフォームの知識
- :DevOpsおよびCI/CDツールチェーン(Jenkins、AzureDeveloperServices、GitHub)およびコンテナオーケストレーションシステム(Docker、Kubernetes、CloudFoundry、AzureKubernetesService、GitHub
Required/Minimum Qualifications (RQs/MQs):
- Bachelor’s degree in computer science, Information Technology, Engineering, Business or related field AND 5+ years’ experience in cloud/infrastructure technologies, information technology (IT) consulting/support, systems administration, network operations, software development/support, technology solutions, practice development, architecture, and/or Business Applications consulting OR equivalent experience.
Additional or Preferred Qualifications (PQs)
- Business Value: The ability to convey the business need and value of proposed solutions, plans, and risks to stakeholders and decision makers. This includes the ability to persuade and inform based on facts and alignment with goals and strategy.
- Trusted Advisership : The ability to build trusted advisor status and deep relationships across stakeholders (e.g., technical decision makers, business decision makers) through an understanding of customer needs and technologies.
- Situational fluency: Using self-awareness as a mechanism to interpret verbal and non-verbal cues to increase your ability to "read the room."
- Insightful listening: asking insightful questions to understand the customer needs, issues, business environment and drivers, and going beyond what customer said.
- Breadth of technical experience and knowledge in foundational security, foundational AI, architecture design , with depth / Subject Matter Expertise in one or more of the following:
- Deep domain expertise in one of the Data-specific areas, such as Azure SQL Data (IaaS/PaaS), deployments and migrations to the cloud, Open-source database deployments and migrations, Cloud Scale Analytics, and Data Governance OR hands-on experience working with the respective products at the expert level.
- Experience creating Data & Analytics Proof of Concepts (PoC), Minimum Viable Products (MVPs) for customers that lead to production deployments.
- Competitive Landscape: Knowledge of key Data & Analytics platforms such as AWS, GCP, Snowflake, Databricks, etc.
- Software development practices like DevOps and CI/CD tool chains (i.e., Jenkins, Azure Developer Services, GitHub) and container orchestration systems (i.e., Docker, Kubernetes, Cloud Foundry, Azure Kubernetes Service, GitHub).